History
The discovery of the electron was the first indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomson's "plum pudding" model in which the atom was a large positively charged ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had also discovered three types of radiation coming from atoms, which they named alpha, beta, and gamma radiation. Experiments in 1911 by Lise Meitner and Otto Hahn, and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that energy was not conserved in these decays. The problem would later lead to the discovery of the neutrino (see below).
Around the same time that this was happening (1909) Hans Geiger and Ernest Marsden performed a remarkable experiment in which they fired alpha particles (helium nuclei) at a thin film of gold foil. The plum pudding model predicted that the alpha particles should come out of the foil with their trajectories being at most slightly bent. He was shocked to discover that a few particles were scattered through large angles, even completely backwards in some cases. The discovery eventually led to the Rutherford model of the atom, in which the atom has a very small, very dense nucleus consisting of heavy positively charged particles with embedded electrons in order to balance out the charge. As an example, in this model nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons, and the nucleus was surrounded by 7 more orbiting electrons.
Ernest Rutherford got most of the credit for the invention of the nucleus merely because at that time in England only the Members of the Royal Society of London were allowed to present results and only those papers presented at the Royal Society would get an international acceptance. Although the actual invention of the nucleus was done by Geiger and Marsden, they had to request Rutherford to present their results on their behalf at the Royal Society. Hence the world erroneously recognised it as Rutherford's discovery.
The Rutherford model worked quite well until studies of nuclear spin were carried out by Franco Rasetti at the California Institute of Technology in 1929. By 1925 it was known that protons and electrons had a spin of 1/2, and in the Rutherford model of nitrogen-14 the 14 protons and six of the electrons should have paired up to cancel each others spin, and the final electron should have left the nucleus with a spin of 1/2. Rasetti discovered, however, that nitrogen-14 has a spin of one.
In 1930 Wolfgang Pauli was unable to attend a meeting in Tübingen, and instead sent a famous letter with the classic introduction "Dear Radioactive Ladies and Gentlemen". In his letter Pauli suggested that perhaps there was a third particle in the nucleus which he named the "neutron". He suggested that it was very light (lighter than an electron), had no charge, and that it did not readily interact with matter (which is why it hadn't yet been detected). This desperate way out solved both the problem of energy conservation and the spin of nitrogen-14, the first because Pauli's "neutron" was carrying away the extra energy and the second because an extra "neutron" paired off with the electron in the nitrogen-14 nucleus giving it spin one. Pauli's "neutron" was renamed the neutrino (Italian for little neutral one) by Enrico Fermi in 1931, and after about thirty years it was finally demonstrated that a neutrino really is emitted during beta decay.
In 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert Becker, Irène and Frédéric Joliot-Curie was actually due to a massive particle that he called the neutron. In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons and that there were no electrons in it, and Francis Perrin suggested that neutrinos were not nuclear particles but were created during beta decay. To cap the year off, Fermi submitted a theory of the neutrino to Nature (which the editors rejected for being "too remote from reality"). Fermi continued working on his theory and published a paper in 1934 which placed the neutrino on solid theoretical footing. In the same year Hideki Yukawa proposed the first significant theory of the strong force to explain how the nucleus holds together.
With Fermi and Yukawa's papers the modern model of the atom was complete. The center of the atom contains a tight ball of neutrons and protons, which is held together by the strong nuclear force. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus, or beta decay, in which they eject an electron (or positron). After one of these decays the resultant nucleus may be left in an excited state, and in this case it decays to its ground state by emitting high energy photons (gamma decay).
The study of the strong and weak nuclear forces led physicists to collide nuclei and electrons at ever higher energies. This research became the science of particle physics, the crown jewel of which is the standard model of particle physics which unifies the strong, weak, and electromagnetic forces.
[edit] Modern nuclear physics
A heavy nucleus can contain hundreds of nucleons (neutrons and protons), which means that to some approximation it can be treated as a classical system, rather than a quantum-mechanical one. In the resulting liquid-drop model, the nucleus has an energy which arises partly from surface tension and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of binding energy with respect to mass number, as well as the phenomenon of nuclear fission.
Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the nuclear shell model, developed in large part by Maria Goeppert-Mayer. Nuclei with certain numbers of neutrons and protons (the magic numbers 2, 8, 20, 50, 82, 126, ...) are particularly stable, because their shells are filled.
Much of current research in nuclear physics relates to the study of nuclei under extreme conditions such as high spin and excitation energy. Nuclei may also have extreme shapes (similar to that of American footballs) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an accelerator. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a phase transition from normal nuclear matter to a new state, the quark-gluon plasma, in which the quarks mingle with one another, rather than being segregated in triplets as they are in neutrons and protons.
[edit] Modern topics in nuclear physics
[edit] Spontaneous changes from one nuclide to another: nuclear decay
If a nucleus has too few or too many neutrons it may be unstable, and will decay after some period of time. For example, nitrogen-16 atoms (7 protons, 9 neutrons) beta decay to oxygen-16 atoms (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is turned into a proton and an electron by the weak nuclear force. The element of the atom changes because while it previously had seven protons (which makes it nitrogen) it now has eight (which makes it oxygen). Many elements have multiple isotopes which are stable for weeks, years, or even billions of years.
The discovery of the electron was the first indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomson's "plum pudding" model in which the atom was a large positively charged ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had also discovered three types of radiation coming from atoms, which they named alpha, beta, and gamma radiation. Experiments in 1911 by Lise Meitner and Otto Hahn, and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that energy was not conserved in these decays. The problem would later lead to the discovery of the neutrino (see below).
Around the same time that this was happening (1909) Hans Geiger and Ernest Marsden performed a remarkable experiment in which they fired alpha particles (helium nuclei) at a thin film of gold foil. The plum pudding model predicted that the alpha particles should come out of the foil with their trajectories being at most slightly bent. He was shocked to discover that a few particles were scattered through large angles, even completely backwards in some cases. The discovery eventually led to the Rutherford model of the atom, in which the atom has a very small, very dense nucleus consisting of heavy positively charged particles with embedded electrons in order to balance out the charge. As an example, in this model nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons, and the nucleus was surrounded by 7 more orbiting electrons.
Ernest Rutherford got most of the credit for the invention of the nucleus merely because at that time in England only the Members of the Royal Society of London were allowed to present results and only those papers presented at the Royal Society would get an international acceptance. Although the actual invention of the nucleus was done by Geiger and Marsden, they had to request Rutherford to present their results on their behalf at the Royal Society. Hence the world erroneously recognised it as Rutherford's discovery.
The Rutherford model worked quite well until studies of nuclear spin were carried out by Franco Rasetti at the California Institute of Technology in 1929. By 1925 it was known that protons and electrons had a spin of 1/2, and in the Rutherford model of nitrogen-14 the 14 protons and six of the electrons should have paired up to cancel each others spin, and the final electron should have left the nucleus with a spin of 1/2. Rasetti discovered, however, that nitrogen-14 has a spin of one.
In 1930 Wolfgang Pauli was unable to attend a meeting in Tübingen, and instead sent a famous letter with the classic introduction "Dear Radioactive Ladies and Gentlemen". In his letter Pauli suggested that perhaps there was a third particle in the nucleus which he named the "neutron". He suggested that it was very light (lighter than an electron), had no charge, and that it did not readily interact with matter (which is why it hadn't yet been detected). This desperate way out solved both the problem of energy conservation and the spin of nitrogen-14, the first because Pauli's "neutron" was carrying away the extra energy and the second because an extra "neutron" paired off with the electron in the nitrogen-14 nucleus giving it spin one. Pauli's "neutron" was renamed the neutrino (Italian for little neutral one) by Enrico Fermi in 1931, and after about thirty years it was finally demonstrated that a neutrino really is emitted during beta decay.
In 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert Becker, Irène and Frédéric Joliot-Curie was actually due to a massive particle that he called the neutron. In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons and that there were no electrons in it, and Francis Perrin suggested that neutrinos were not nuclear particles but were created during beta decay. To cap the year off, Fermi submitted a theory of the neutrino to Nature (which the editors rejected for being "too remote from reality"). Fermi continued working on his theory and published a paper in 1934 which placed the neutrino on solid theoretical footing. In the same year Hideki Yukawa proposed the first significant theory of the strong force to explain how the nucleus holds together.
With Fermi and Yukawa's papers the modern model of the atom was complete. The center of the atom contains a tight ball of neutrons and protons, which is held together by the strong nuclear force. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus, or beta decay, in which they eject an electron (or positron). After one of these decays the resultant nucleus may be left in an excited state, and in this case it decays to its ground state by emitting high energy photons (gamma decay).
The study of the strong and weak nuclear forces led physicists to collide nuclei and electrons at ever higher energies. This research became the science of particle physics, the crown jewel of which is the standard model of particle physics which unifies the strong, weak, and electromagnetic forces.
[edit] Modern nuclear physics
A heavy nucleus can contain hundreds of nucleons (neutrons and protons), which means that to some approximation it can be treated as a classical system, rather than a quantum-mechanical one. In the resulting liquid-drop model, the nucleus has an energy which arises partly from surface tension and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of binding energy with respect to mass number, as well as the phenomenon of nuclear fission.
Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the nuclear shell model, developed in large part by Maria Goeppert-Mayer. Nuclei with certain numbers of neutrons and protons (the magic numbers 2, 8, 20, 50, 82, 126, ...) are particularly stable, because their shells are filled.
Much of current research in nuclear physics relates to the study of nuclei under extreme conditions such as high spin and excitation energy. Nuclei may also have extreme shapes (similar to that of American footballs) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an accelerator. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a phase transition from normal nuclear matter to a new state, the quark-gluon plasma, in which the quarks mingle with one another, rather than being segregated in triplets as they are in neutrons and protons.
[edit] Modern topics in nuclear physics
[edit] Spontaneous changes from one nuclide to another: nuclear decay
If a nucleus has too few or too many neutrons it may be unstable, and will decay after some period of time. For example, nitrogen-16 atoms (7 protons, 9 neutrons) beta decay to oxygen-16 atoms (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is turned into a proton and an electron by the weak nuclear force. The element of the atom changes because while it previously had seven protons (which makes it nitrogen) it now has eight (which makes it oxygen). Many elements have multiple isotopes which are stable for weeks, years, or even billions of years.
Atomic nucleus
The central region of an atom. Atoms are composed of negatively charged electrons, positively charged protons, and electrically neutral neutrons. The protons and neutrons (collectively known as nucleons) are located in a small central region known as the nucleus. The electrons move in orbits which are large in comparison with the dimensions of the nucleus itself. Protons and neutrons possess approximately equal masses, each roughly 1840 times that of an electron. The number of nucleons in a nucleus is given by the mass number A and the number of protons by the atomic number Z. Nuclear radii r are given approximately by r = 1.2 × 10−15 m A1/3.
The central region of an atom. Atoms are composed of negatively charged electrons, positively charged protons, and electrically neutral neutrons. The protons and neutrons (collectively known as nucleons) are located in a small central region known as the nucleus. The electrons move in orbits which are large in comparison with the dimensions of the nucleus itself. Protons and neutrons possess approximately equal masses, each roughly 1840 times that of an electron. The number of nucleons in a nucleus is given by the mass number A and the number of protons by the atomic number Z. Nuclear radii r are given approximately by r = 1.2 × 10−15 m A1/3.
Subscribe to:
Comments (Atom)